
Element Reference Programming and Fun with
Numipulator

David Wolstenholme

TopAccolades Ltd wolstede@yahoo.com
www.numipulator.com

Abstract. Numipulator is a fully declarative programming environment
with a very simple syntax. Its core elements are boxes, each of which
has one or more input fields, and, generally, a drop-down list of built-
in functions to be applied to the inputs to give the output. Inputs and
outputs may be either simple numbers or lists of numbers only. Each
box has a reference name that can be used in inputs of other boxes
to represent its value, thus allowing boxes/functions to be linked up to
provide the required outputs through a Function Evaluation cycle. It has
two graphical formatters that can be used to provide graphical outputs
(grids of cells), derived from one or two lists of numbers, principally
through the use of format codes specifying shapes/symbols, colours and
borders. It has a simple processing engine that allows repeated Function
Evaluations to be specified. The control of repetition termination, the
delay till the start of the next cycle and the display or not of graphics
after any cycle can be controlled by Function Evaluation results, thus
giving dynamic declarative control. Using these, plus Memory boxes to
manage state, and number<->text mapping specifications, sophisticated
graphical apps, including ones similar to well-known interactive games,
can be developed, showing that declarative programming with functions
and numbers can be fun.

Keywords: Numbers · Lists · Graphics · Games · Reference Names.

1 Introduction

Numipulator is a novel, fully declarative programming environment and lan-
guage, intended for students, hobbyists and those prototyping, that has possibly
the simplest syntax of any high-level programming language. At its heart is a set
of boxes, each of which specifies a numerical manipulation or calculation (hence
the system name) to be carried out. These are mostly laid out in rows of the
same type, labelled from A to Z. Some of these are shown in Figure 1. Each box
can be considered as a form specifying a function (a few are non-deterministic,
such as random number) to be evaluated by the Function Evaluator. Input fields
specify the inputs to the function. Each input field specifies either a simple num-
ber or a list of numbers (the field shapes are distinctive, as seen in Figure 1).
The result of each will also be either a simple number or a list of numbers, nor-
mally displayed in an output field in the box. Each box has a reference name,



2 David Wolstenholme

Fig. 1. Part of the Numipulator program for the Code4x6 (Mastermind) game, with
its graphical output superimposed

e.g. A1 or C2. These reference names can be used to link the boxes, and hence
the functions, together by specifying that the result of one be the input, or part
of the input, to another, in a way that is similar to that used in spreadsheets.

There are different types of box, with one or more inputs, and generally a
drop-down list of function names/descriptions, one of which is selected by the
programmer to be applied to the specified inputs to give the resulting value. The
types include: simple Number Operations and Number Functions, as shown in
Rows A and B in Figure 1; various list functions and operations, such as those
shown in Row C, that take a list of numbers and produce a number as output, e.g.
sum of list; list analysis (Findall, Count and Range); If-Then-Else expressions;
and table-handling functions and operations (where a table is defined by two
inputs - a list of values and the number of columns in the table), which also
include graphics-specific functions.

Given that its core functions can accept only numerical input values and have
numerical results, Numipulator is not a general purpose programming environ-
ment. However, apart from being eminently suitable for numerical applications,
it has a number of features that make it particularly suitable for programming
interactive games and puzzles.

It has two graphical interfaces, both with a grid of square graphical cells:
the Animation Zone (up to 150x150 cells) and the Graphics Formatter (10x10
default). The Animation Zone has an associated 9-key keypad (8 arrows + fire)
allowing the user to interact with graphical objects on the display. Tapping one
of these sets an internal value called keypad to the value of the key pressed (1-9).
In contrast, the second one, the Graphics Formatter, has no keypad; instead, the



Element Reference Programming and Fun with Numipulator 3

user interacts directly with the cells by tapping on them. This changes two input
values, representing Row and Column number, and also sets an internal value
called click to 1. The programmer must specify initial (init) values for Row and
Column if used.

Fig. 2. Graphics displays for six games

The displays generated in the simplest one, the Animation Zone, are deter-
mined from a single input list, the cell format codes, generally specified by the
reference name of one of the boxes that has a list result. Each number on the list
corresponds to one of the cells on the grid and is taken to be an integer format
code that specifies the colour of the cell and whether or not the cell should have
a border. The simplest codes are the codes 1-20, each of which specifies that the
cell should have a border and should take a specific background colour, e.g. 1
means white, 2 black, 3 red, 4 green, 5 blue, 6 magenta and so on to 20 specifying
beige. Code 3 associated with a given cell therefore results in that cell having
a red background and a border. Negative equivalents of these codes have the
same colour but no border, while code 0 specifies a black borderless cell. So, a
list beginning -3 0 -5 4 will result in a display having three borderless cells in
the top-left corner, red, black and blue, followed by a bordered green cell. Most
games and puzzles included in Numipulator for the Animation Zone use only the
simple codes -20 to 20. The top three images of Figure 2 show image captures for
three games that use the Animation Zone: Alien Invasion (like Space Invaders),
Falling Shapes (like Tetris) and Fun Runner. Additionally, Numipulator has a
set of format codes used to specify 1000 different colours, rather than just 20.
The codes are the integers 1000-1999. The form of the code is 1RGB, where the
RGB numerals specify the intensity of the three colours red, green and blue, from
0 (no intensity) to 9 (full intensity). So, code 1990 specifies yellow (full inten-



4 David Wolstenholme

sity red and green, but no blue). Other codes based on RGB intensities specify
millions of different colours. In all cases, negative numbers are borderless.

The Graphics Formatter uses two input lists to produce its graphics. One is
again a set of cell format codes, while the other is a list of values, the same length
as the format codes. Given the same format code as for the Animation Zone, the
cell will again display the specified background colour, but the corresponding
number on the value list is displayed in a text field in the middle of the cell.
However, additional codes are also available for the Graphics Formatter that
enable many thousands of shapes and Unicode symbols, characters and emojis
to be displayed, where the codes include specification of the foreground and
background colours to be used, based on the Animation Zone colours (e.g. 0 - 20).
So, code 860305 specifies a star (86) that is red (03) on a blue (05) background
with a border. Some of these additional codes make use of the associated value,
but others, such as the example just given, ignore it entirely.

The programmer may also employ output mapping, a different type of simple
declarative programming. Output mapping is specified through declarations that
specify text to be output instead of the associated value, e.g.
-1 A
-2 B ...
-26 Z
<-26 No way!
n NOTEXT
The first line means that -1 should be displayed as ’A’. The penultimate line
means that any number below -26 should be displayed as ’No way!’. The last
line specifies that any other number should be mapped to the special word
NOTEXT, which means that no text field is displayed at all. Such mappings
enable letters, text buttons or labels to be displayed. The bottom three images
of Figure 2 show images from Graphics Formatter games and puzzles: Triple
Jewels (like Bejeweled), Memory Pairs and Poker Squares (with text labels).

Being fully declarative, Numipulator needs no procedural statements to dis-
play the graphical output, just the specification of input number lists. Both
graphical formatters also have a Feedback field associated with them to provide
messages, scores, instructions, etc. to the user. Each Feedback has its own input
specification and output mappings to allow suitable messages to be presented.

Apart from the lack of procedural statements to be written, a major contrib-
utor to the simplicity of Numipulator for the programmer is the syntax when
specifying a list input. A list input field can contain numbers, e.g. 2 or -3.6, sep-
arated by one or more number separators: space, comma, tab, semicolon, colon,
paragraph/return or comment in a pair of braces {like these}. A list specification
may also be or include a token that represents a list or a number, including a ref-
erence name, e.g. A1. Except for reference names, there are only 6 built-in tokens
for numbers and lists, including pi and L0, which specifies an empty list (a list
of length 0). Apart from these tokens, numbers, reference names and separators,
nothing else appears as standard in a list input specification: no parentheses,
square brackets, quotes, or function names. Furthermore, the use of punctua-



Element Reference Programming and Fun with Numipulator 5

tion symbols and returns as number separators is optional for the programmer
(spaces only could be used), and need be included for the programmer’s benefit
only, where their use helps the programmer in some way, e.g. for grouping sets
of parameters or for formatting the list as a table. Regardless of the formatting
and the separators used, the system treats the input as a simple list in all cases.
So, the list 1 2 3 D1 5 6 could be entered exactly like this or as, for example:

1, 2 : 3
D1 {the initial number of items}; 5 : 6

Further tokens may be used in input specifications, at the programmer’s discre-
tion, to represent individual numbers, through the use of input mapping. This is
another form of very simple declarative programming. The programmer enters
token/number pairs in the Mappings field, e.g. A -1 B -2 C -3 ... Z -26, so that
the letter A may be used in any input instead of -1, etc. A benefit of this from
the game/puzzle programmer’s perspective is that letters making words can be
entered into list inputs, e.g. A P P L E : M A N G O : G R A P E which, as a
word list, is, of course, much more meaningful for the programmer than -1 -16
-16 -12 -5 -13 -1 -14 -7 -15 -7 -18 -1 -14 -5.

Numipulator includes an A-Z button below the Mappings field. Pressing this
inserts the above mappings into the field. To simplify the programmer’s effort
further, the output mapping declaration associated with the Graphics Formatter
may have just the single word Mappings entered into it, which essentially reverses
the input mappings. So, despite the fact that the core Function Evaluator handles
only numbers and number lists, word/letter games and puzzles, e.g. Word Ladder
or Wordle-like puzzles, may be implemented with extensive word lists using these
mapping declarations.

Numipulator also includes an Expression function that enables arithmetic
and logical expressions to be evaluated, where number codes represent operators,
e.g. 1=add, 2=subtract, 3=multiply. With this, the expression 10+11x20 can be
evaluated by the list 10 1 11 3 20. Input mapping can be applied to these operator
codes (a button can be used to add these) so that this can be written as 10 +
11 x 20. This mapping enables mixed arithmetic and logical expressions such as
A1 > 5 + A2 AND A3 < 25 OR A4 = A5 to be entered and evaluated (1 or 0
instead of True or False).

The development of dynamic, interactive apps requires more than the out-
putting of one graphical display; it requires a sequence of output displays, chang-
ing with or without user interaction. Central to this is Numipulator’s processing
engine, which incorporates a single repeat-until loop. This is triggered whenever
the Start button is pressed. By default, it carries out one processing cycle that
includes one Function Evaluation, i.e. the evaluation of all the boxes with inputs
specified, and then terminates and produces any graphical display based on these
results. Additionally, a repetitions termination condition - a simple comparison
(e.g. = or >) between two numbers - may be specified. If this condition succeeds,
repetitions stop, otherwise another processing cycle, including another Function
Evaluation and output display, occurs, and so on.



6 David Wolstenholme

As well as checking for the termination condition, the processing engine also
checks two other control values when another cycle is required. Control1 specifies
a delay time before the next processing cycle should begin. This can be used to
allow the user of the Graphics Formatter time to interact with the cells of the
display grid, or to change the speed of an app. Control2 is a value that determines
whether or not the Graphics Formatter should update its display based on its
input lists (useful for hiding certain updates from the user). These two control
values and the two numbers in the termination condition may all be specified
directly by a number or by reference to other boxes. This means that they may
change from cycle to cycle. This dynamic declarative control is important for
the programmer, as the procedural aspects of an app can be crucial. In a game
with several phases, for example, some phases require multiple repetitions, others
only one; some require the display to be updated after a cycle and a delay for
the user to see this or to tap, while others don’t. The program must therefore
include functions that produce different control values (repetition termination,
delay and display) for the different phases.

The final element required to develop dynamic apps is the handling of state
- for a game maybe the board positions and the score - without using variables.
Numipulator manages state through Memory boxes, both number and list types.
In essence, each Memory box has a specification for its main value (in this
cycle) and another for its value in the next cycle. At the end of a cycle, the
value calculated for the next cycle is taken by the processing engine and used
to replace the specification for the main value, so that this will become the
value in the next cycle. Although these Memory boxes are used to store state,
they are not variables: their values remain constant during a single Function
Evaluation; the processing engine changes their main input specifications once
only after an evaluation cycle. In summary, state is managed by changes to input
specifications, i.e. by changes to the program, carried out automatically by the
processing engine.

Fig. 3. Simple graphical layout with direct entry of cell formats (codes magnified)



Element Reference Programming and Fun with Numipulator 7

The Numipulator programming environment facilitates rapid production of
graphical results. For a student learning to program with Numipulator, this can
give a quick sense of achievement. As an example of rapid graphical results,
the programmer could enter the codes directly into the Cell formats field of the
Animation Zone. The graphical output resulting from pressing the = button is
displayed immediately; this is shown in Figure 3. This clearly demonstrates the
advantages of being able to format an input list, in this case as a 10x10 table,
as the association of code with cell can be easily seen.

For the programmer, Numipulator has certain distinct advantages over many
programming environments when testing or debugging. The values associated
with the last cycle for all inputs to boxes and graphical formatters and for all
results/outputs can be seen in a bottom-up style by pressing the Values but-
ton. A set of repetitions may be stopped at any point by pressing the Stop
button to allow this. The data flow can be visualized through the Flow button,
which shows the data dependencies of the formatters and boxes in a top-down
fashion diagrammatically (Figure 4). It is a web-based system (Javascript and
HTML/CSS only), and is interpreted, not compiled, so the time from program-
ming to receiving feedback is short.

Fig. 4. Example of a Flow diagram

One downside with Numipulator is that it can be difficult for the programmer
to see the details of the list inputs in the small fields, as these could contain many
numbers and comments. However, there is a Text button that displays the full
program text in a more easily readable top-to-bottom layout.

These features and its syntax mean that Numipulator has great potential for
use by students, not only as an introduction to declarative programming, but
also for learning programming generally in a simple and fun way. Learning to
program requires many skills, and too often students fail to get over the first



8 David Wolstenholme

hurdle of syntax in the hierarchy of skills[1], so cannot move on to problem solv-
ing: analysis, algorithm development, coding and testing. Bosse and Gerosa[2]
and Cheah[3] refer to the many difficulties with syntax that students encounter
with languages used in industry; this should not be the case with Numipula-
tor. Numipulator programming will appear as a course for the University of the
Third Age (U3A) in Kingston in 2024.

Tisza and Markopoulos[4] emphasize the role of fun in learning to program,
while in his Scientific American article[5], Alan Kay writes of the importance
of computer literacy: not just using applications such as spreadsheets or word-
processors, but a contact with computing deep enough to be "fluent and enjoy-
able". One of the objectives of Numipulator development was to make it enjoy-
able and fun to use for hobbyists and students by providing means of creating
graphical displays, games and puzzles, so demonstrating that numbers can be
fun and helping users develop programming competency and computer literacy.

2 Element Reference Programming and Relationship to
Spreadsheets

Spreadsheets influenced the design of Numipulator. A spreadsheet such as Excel
is widely used for handling lists, yet a list is not a core data type. A user wishing
to sum up a list of numbers must enter them into separate cells, and then enter
a formula in another cell to determine their sum, e.g. =SUM(A1:A3). An initial
goal for the design of Numipulator was to make the handling of lists a core
functionality and easier to carry out than in spreadsheets by making a number
and a list of numbers the core data types of Numipulator. This allows the list
and the sum to be encapsulated in one box.

Spreadsheets are very widely used and, in their purest form, are declarative
in nature, making them probably the most widely used form of declarative pro-
gramming. Their use of reference names to refer to the value of another cell is
easy to understand, and the naming convention helps users locate the cell being
referred to. Numipulator also follows this approach, but these reference names
are used only to help locate an individual box; there is no concept of a range
(such as A1:A3) as found in spreadsheets.

Numipulator and spreadsheets have much in common. Both provide the user
with an extensive set of functions (over 450 in Numipulator) that can be used
to determine the value of their core evaluation elements (cells in spreadsheets,
boxes in Numipulator), and their values can be specified as inputs to other
elements through reference names. Both also employ bottom-up evaluation of
their elements. Now, Burnett et al [6] describe the spreadsheet paradigm as a
first-order subset of the functional programming paradigm. However, functional
programming is generally characterized by its treatment of functions as first-
class citizens and by its use of recursion, amongst other features. These do not
apply to a spreadsheet like Excel or to Numipulator, so both are probably better
described as programming with functions or as element reference programming,
due to their use of reference names to refer to evaluation elements.



Element Reference Programming and Fun with Numipulator 9

3 Boxes: Structure, Layout and Types

Most of the boxes of Numipulator are laid out in rows of 5 boxes (see Figure 1).
The boxes have reference name labels, e.g. A1, A2, A3, A4 and A5, for row A.
Users can easily insert a new row underneath the current row, with sequential
reference names, e.g. A6...A10.

The basic design of these boxes is modelled on the way most people learn
to do basic arithmetic at school, with inputs, an operator, and then a line with
the result underneath. Each Number Operation box, as shown in Figure 5, is
modelled on this layout, with two input fields, and then a drop-down list of
number operations (including +, -, x, / and % - 28 in all), which essentially
combines the line and the operator, and the output or result field underneath
this. The reference name for the first box shown, A1, is shown next to the result.
It can be seen that this reference name is specified in the first input field of
the second, A2, so these two are linked. The results are shown in the number
fields below the drop-down lists - displayed only after the = or Start button
is pressed. Two further types are also shown in Figure 5 below the Number

Fig. 5. Examples of boxes

Operation boxes, this time with lists as inputs. Again, the result fields appear
under the drop-down lists of functions. One is List Function to Number (Row
C), with a number as output, which has over 30 functions available including:
sum, average, maximum value, expression, and head. The other is List Function
to List (Row H), with a list as output, where an ascending sort has been selected
from over 20 available functions, including reverse, cumulative sum, frequencies,
permutation and tail.

Each box also has a note field, an information (i) button that shows its
dependencies and dependents and the values of inputs and outputs, and a clear
(X) button. The reference name is shown next to the result. Tapping on the



10 David Wolstenholme

box type (Number Operation) opens up descriptions and examples of use of the
functions associated with it.

Other box types cover list generation (e.g. series, random numbers, dates and
number repetitions), list operations (e.g. item at given position and sublist sum),
list/list operations (e.g. union and diff), findall (e.g. all numbers > 3 on the list
or their positions), count (e.g. number of items < 3), If-Then-Else expressions
(various types including the one already mentioned), and table functions and
operations, including shifts, rotations, flips, permutations, cluster analysis, row,
column, block or cell values, lookups, searches (e.g. rows where column 2 > 0),
and table changes, such as deleting rows, adding rows and changing values of
the table - particularly useful for graphics.

A distinctive feature of Numipulator is its use of item-by-item list handling
to make calculations involving the same operation on lists of numbers easier to
specify. For example, the Items Operation box carries out the same operation
(identical to those for Number Operation: add, subtract, etc.) on corresponding
items in two lists to give the resulting list, as shown in the third box at the top
of Figure 5. If the second list consists of just one item, it will carry out the same
operation using this number on each of the items in the first list, as shown in
the last box at the top of Figure 5.

This item-by-item approach is used elsewhere in Numipulator, including with
some If-Then-Else expressions, so that comparisons of the first two input lists
are done an item at a time, and the output list is constructed as appropriate
from the alternative items on the last two input lists.

4 Numbers and Lists: Syntax and Semantics

The syntax of most declarative or other programming languages is not easy to
understand or remember for learners: there are so many parentheses, square
brackets, arrows, commas and colons. For the boxes handled by Numipulator’s
Function Evaluator, the syntax can be kept simple due to their use of input fields
and their drop-down lists of selectable functions. The language does not need
commas to separate arguments or parentheses to group the arguments together:
the fields and the boxes perform these roles.

A list input may include numbers, reference names that refer to either num-
bers or lists and tokens of either type: single number or list of numbers. So, if
D1 and D2 are references to numbers with values 1 and 2 respectively and E1
and E2 are references to lists with values 3 4 and 5 6 respectively, then the list
input specification D1 D2 has the list value 1 2, the list specification E1 E2 has
the list value 3 4 5 6, while the list specification E1 E2 D2 has the list value 3 4
5 6 2, with no explicit concatenation functions required. Such mixing of number
and list reference names in an input specification might seem unusal, but this
is due to the semantics of a list in Numipulator: a list is an empty list (L0),
a number, or a number followed by a list. This means that a list is 0 or more
numbers, where these numbers follow each other. In the specification of a list,
each list, reference name or token can be considered to be separated from the



Element Reference Programming and Fun with Numipulator 11

next by an implicit ’followed by’ operator. Expressed informally, the value of a
list with reference names in the specification is derived by placing the value of
the reference in the list where it is found in the specification. Given this, if K4
is a list reference whose value is an empty list, the specification E1 K4 E2 D2
K4 has the list value 3 4 5 6 2, as no numbers representing K4 are placed into
the list.

The two data types, number and list, intersect: a list with one number on it
is just a number, so is identical to a number in Numipulator. This means that it
is valid to specify a number input using a list reference name. At run-time, the
system checks whether the list has exactly one number on it. If so, this number
is taken to be the input. If it does not have exactly one number on it, a run-time
error is thrown. This is important for the programmer to understand, as it means,
overall, that any list output with a single number on it may be used anywhere
in Numipulator as if it were a simple number. Numipulator therefore does not
include alternative number-output versions of some list-output functions. For
example, the If-Then-Else (Simple) box type has two number inputs (a and b)
and two list inputs (lc and ld), and the drop-down functions are if a < b: lc, else
ld and five others with different comparison operators. The result will be either lc
or ld, depending on the comparison result. While lc and ld can contain lists with
many or no items, they can also contain single-number lists, in which case the
result can be used anywhere as though it were a number. Strictly, Numipulator
does not need separate functions with number outputs, but some are included,
such as Number Operations, as users would be familiar with these.

The six built-in tokens representing numbers or lists operate in the same way
as reference names above. The number values are: pi, e* (e - the base of natural
logs), click (1 if a cell of the Graphics Formatter has been tapped, 0 otherwise)
and keypad (1-9 depending on the Animation Zone keypad key tapped, 0 if
none). The two list values are: L0 (empty list) and now (8 numbers related to
time/date at the start of the cycle, inc. year, month, date, hour, minute, and
second).

5 Memory Boxes

Numipulator has no variables in which to store state from one cycle to another,
so a different approach is required. In essence, the Numipulator processing engine
modifies the inputs to certain types of box: Memory Number or Memory List.
To understand these, the Memory Number shown on the left of Figure 6 (Y1) is
best considered as shown on the right, with two implicit identity functions made
explicit. Associated with it are, unusually, two values that can be evaluated in a
cycle: (1) the principal value, Y1, whose input is the single input field, mem, and
whose value is determined by the identity function; (2) a second value, newY1,
whose input is the single input field, next, and whose value is determined by the
identity function. Now, newY1 and mem are actually the same field, as shown.
This means that the output newY1, specified by next, becomes the input, mem,
to Y1 in the next cycle, so will become the next value of Y1. The system therefore



12 David Wolstenholme

Fig. 6. Number Memory box with explanation

makes an output value from one cycle an input to the next cycle by modifying
the input specification. State changes are therefore reflected in changes to the
program (input specifications), made by the processing engine. Note: Only Y1
above may be used as an input to other boxes; newY1 may not. However, newY1
will be shown when displaying Values or showing the Flow, completely separate
from Y1 (see Figure 4 with both Z1 and newZ1).

Only the system, not the programmer, can write to mem. It needs a specifi-
cation for the first cycle, so the user must provide this in a separate field, init.
If the processing engine finds that mem is empty, or the Start button is pressed,
the text in this is copied from init into mem, to provide its initial specification.

6 Processing Engine

Fig. 7. Numipulator architecture including processing engine

The processing engine of Numipulator, its procedural component shown in
Figure 7, is not complex. For an app started by the Start button, which con-



Element Reference Programming and Fun with Numipulator 13

tinues repetitions until the termination condition succeeds, the simplified steps,
ignoring syntax, circularity or run-time errors, are:

1. Any init fields specified in Memory boxes are copied into the mem fields;
init fields for the Row/Column values of the Graphics Formatter are also
copied into their associated fields.

2. All boxes with text in their inputs are analysed to yield the numbers con-
tained within them, and any other significant tokens. Text->number input
mapping is applied where needed.

3. The dependencies of boxes are determined, and an appropriate bottom-up
evaluation order is determined.

4. Start of an evaluation cycle: The values of now, click and keypad are deter-
mined, and the last two are reset to 0.

5. The values of all inputs and outputs are determined by the Function Evalu-
ator, based on the evaluation order determined. For each Memory box, the
next value output replaces the mem input specification.

6. The termination condition is checked to see whether more cycles are required.
If so, step 7 is followed; if not, step 8.

7. Repetition required : The Animation Zone, if used, is displayed. If Control2
(display) is defined and has a non-zero value, the Graphics Formatter display
is updated, otherwise it is left unchanged. User taps are accepted until the
end of the evaluated delay time (Control1). Step 4 is then followed again.

8. After the final cycle: All results are output and the Graphics Formatter and
Animation Zone, if used, are displayed based on the final results.

No changes can be made to input specifications during a set of repetitions except
those made by the system to the Memory boxes and Row/Column inputs through
user interaction with the Graphics Formatter. The Evaluation Order remains
constant throughout the repetitions.

7 Saving, Loading and Standalone Apps

Numipulator is a single HTML/CSS/Javascript file. As such, it cannot save a file
to a system folder. The current program is, however, automatically saved to local
storage when the Numipulator page is closed, and reloaded when the package is
reopened. For longer term storage, the standard way of saving a program is to
press a button to create a text version of the program and settings wrapped up
in loadable form, and to copy and save this into a text file. The program can be
reloaded by pasting the text file contents into a field and pressing a load button.
The contents of the text file may also be pasted into a field in the Numipulator
Standalone Maker, which creates code for a standalone browser app, with the
graphical interface visible but reformatted and most of the program hidden. The
code generated can be saved (.html), sent to others or put onto a web site.

Numipulator has over 30 built-in apps that can be loaded, including over
20 games and puzzles (one using only 10 boxes). Apart from being helpful or
fun as products, their programs can be inspected by the user as examples of



14 David Wolstenholme

Numipulator programming. Research by Tan et al[7] to determine the learning
methods that are preferred by university students concluded that the students
rated learning by referring to programming examples the highest.

8 Issues

One issue found with Numipulator is redundant evaluation in apps with many
phases. Triple Jewels (Figure 2) is a game in which the player selects two adjacent
jewels in a grid to be swapped with an aim of forming lines of 3 or more jewels of
the same type, which then disappear to be replaced by ones falling from above.
For this, 9 different phases were identified, including filling, checking adjacency,
swapping, checking for triples, and removing jewels. Each phase may require
different functions to generate outputs for the display and state. The functions
required to generate a table with jewels added are quite different from those to
generate one with jewels being removed or swapped. The program must include
them all, and, importantly, all sets of functions will be evaluated at each cycle,
regardless of the phase, because of the strict bottom-up evaluation employed by
Numipulator. If-Then-Else boxes, or others, are used to select which outputs to
use for each phase. As a simple example of this issue, in the Memory Pairs puzzle
(Figure 2), a new 36-tile layout is generated in each cycle, even though this is
used only at the start of the game. This is clearly inefficient, but is a feature of
evaluating the same complete set of functions at each cycle.

The lack of ability to write and call new functions can be frustrating when
several linked built-in functions are required to determine a particular output,
and those same linked functions are required for some other output as well. The
programmer has two choices in this case: repeat the sequence using two or more
sets of boxes, or make use of repetitions in some way. For the Poker Squares game
(Figure 2), the scores for each of the 10 lines are evaluated consecutively in 10
cycles. However, during the development of over 30 apps, this issue did not arise
many times; the fact that the built-in list and table operations allow any number
of sets of parameters to be applied to the input, with the results appended to
each other, helped greatly. The powerful table functions, which include sorting
and summing individual rows, proved invaluable when programming SudokuAs-
sistant. This app can show the user which numbers are valid in an unfilled cell
(e.g. 126 means 1, 2 and 6 are valid); these functions, using 81-column tables,
enable full analysis and display to be carried out in one cycle only.

Although the programmer can employ tens of thousands of symbols and emo-
jis in graphical cells, the graphics available with Numipulator are still limited.
Programming a game in Numipulator can be seen as akin to painting by numbers
or building a model with Lego; although the end product might lack finesse or
have some rough edges, it will still be very usable, and the process of producing
it should be enjoyable.



Element Reference Programming and Fun with Numipulator 15

9 Conclusion

A number of its features make Numipulator stand out: its very simple syntax,
enabled by its form-based interface; its integration of three types of declarative
programming (element reference programming, text to number input mapping
and number to text output mapping); its declarative generation of graphical
displays; its dynamic declarative control capabilities and its potential for use in
teaching. Overall, though, any fully declarative programming environment that
allows the programmer to develop dynamic, interactive, graphical games similar
to Space Invaders, Tetris, Bejeweled, Yahtzee, Connect 4, Wordle and Rummy
is a valuable addition to the declarative programming showcase.

References

1. Jenkins, T.: On the difficulty of learning to program. In: 3rd Annual Conference of
the LTSN Centre for Information and Computer Sciences, 4, pp. 53–58. (2002)

2. Bosse, Y., Gerosa, M. A.: Why is programming so difficult to learn?: Patterns of Dif-
ficulties Related to Programming Learning Mid-Stage. In: ACM SIGSOFT Software
Engineering Notes, 41(6), pp. 1-6. (2017). doi:10.1145/3011286.3011301

3. Cheah, C.S.: Factors Contributing to the Difficulties in Teaching and Learning of
Computer Programming: A Literature Review. In: Contemporary Educational Tech-
nology, 12(2), ep272 (2020). https://doi.org/10.30935/cedtech/8247

4. Tisza, G., Markopoulos, P.: Understanding the role of fun in learning to
code. In: International Journal of Child-Computer Interaction, 28(2), (2020).
doi:10.1016/j.ijcci.2021.100270

5. Kay, A.: Computer software. In: Scientific American, 251, 3 (Sep. 1984), pp. 52–59.
(1984)

6. Burnett M., Atwood, J., Djang,R., Reichwein, J., Gottfried, H., Yang, S.: Forms/3:
A First-Order Visual Language to Explore the Boundaries of the Spreadsheet
Paradigm. In: Journal of Functional Programming, 11(2), pp. 155-206. (2001).
https://doi.org/10.1017/S0956796800003828

7. Tan, P.-H., Ting, C.-Y., Ling, S.-W.: Learning Difficulties in Programming Courses:
Undergraduates’ Perspective and Perception. In: International Conference on Com-
puter Technology and Development, Kota Kinabalu, Malaysia, pp. 42-46. (2009).
doi:10.1109/ICCTD.2009.188


